

galaxie

Galaxie® Superior on principle Hollow shaft Highest torque Extreme torsional rigidity Absolute zero backlash Industry 4.0 connectivity a(p) -D INNOVATIONSPREIS DER DEUTSCHEN WIRTSCHAFT ERSTER INNOVATIONSPREIS DER WELT H E R M E S $\frac{A W A R D}{2 0 1 5}$ DEUTSCHER ZUKUNFTSPREIS Preis des Bundespräsidenten 2018 Kreis der Besten

Fundamentally new overall concept

When we developed the Galaxie[®], we took it upon ourselves to subject drive concepts to a fundamental reassessment. The result: a brand new type of gearbox. It has been developed a new distinct name to describe the innovation: The term "single tooth sliding gearbox" clearly classifies the Galaxie[®] in terms of science, research and technology. Its unique kinematics enable virtually full surface contact during power transmission. This means that the compact Galaxie[®] drive systems and gearboxes with hollow shaft achieve previously inconceivable performance data, including extremely high torque density, torsional rigidity, smooth running, positioning accuracy and zero backlash.

From linear to surface contact

The innovative core of the new Galaxie[®] drive system is the virtually full surface contact during power transmission. This achieves a tooth contact surface that is six and a half times larger compared to conventional involute teeth with line contact. To achieve this maximum contact, we have implemented a fundamentally new concept: individual teeth are guided simultaneously along an internal ring gear. The tooth surface geometry is based on a logarithmic spiral which allows the teeth to engage with the internal ring gear across the full surface.

Next technology drive

The Galaxie[®] drive system achieves a previously unattainable performance level: the gearbox boasts maximum rigidity and zero backlash combined with the highest synchronization values. To achieve this, we have designed the components to ensure continuous smooth movement by shaping them as logarithmic spirals and the resulting contact geometries. The performance features of the single tooth sliding gearbox are all significantly better than those of traditional hollow-shaft drives with the same outer diameter.

Contents

Introduction02
Superior gearbox and drive systems04
Four variants, eight sizes00
Technical details08

Superior gearbox and drive systems

Highest precision over complete lifetime

TCI

Reduction of the total cost of investment by considering the complete system

Rigidity

Positioning accuracy during extreme load variations exceeds the market standard by a factor of 5

Overload capacity

Surface contact of the teeth enables up to triple overload of the maximum torque

True zero backlash

Over the entire lifetime

Torque density

Torque up to 3 times higher than dimensionally similar drive solutions

4

Long service life

Virtually wear-free toothing based on a logarithmic spiral in place of an involute

Energy efficient

Up to 50% lower energy consumption through downsizing

TCO

Increase in productivity by up to 40% through the use of disruptive technology

Configurable

Perfectly adapted drive system to your application without any compromises

An ingenious concept in two series, four variants and eight sizes

Galaxie® properties of true zero backlash with highest torque density, torsional rigidity and positioning accuracy are valid for all versions throughout the entire service life. These characteristics are available in two series: The Galaxie® accuracy line is characterized by maximum precision and accuracy, and has the largest possible hollow shaft. The Galaxie® robustness line focuses on maximum overload capacity and maximum resilience against process influences - such as external forces or vibrations.

Gearbox + adapter plate = maximum flexibility

Torsional rigidity Hollow shaft diameter

Galaxie[®] G

Configurable backlash-free gearbox with optional coaxial planetary pre-stage and adapter plate.

Gearbox + motor = ultra-compact hollow shaft actuator

Galaxie[®] D

Hollow-shaft compact drive with integrated permanently excited synchronous motor with standard encoder systems.

Galaxie[®] GH

Galaxie[®] gearbox with hypoid pre-stage and adapter plate with optional additional coaxial pre-stage and hollow shaft.

Gearbox + drive interface = large hollow shaft + extremely short design

Galaxie[®] GS

Compact, configurable zero backlash gearbox with hollow shaft and drive interface.

Galaxie[®] G

Galaxie[®] GH

Product characteristics:

Configurable backlash-free gearbox with optional coaxial planetary pre-stage and adapter plate.

Typical applications:

A/B/C axis for precise positioning in cutting machine tools such as lathes, in mechanical drive technology or medical technology.

Note:

Adapter plate and motor shaft coupling configurable for all common industrial motors. Ratio up to i = 301 can be realized with planetary pre-stage.

		Galaxie [®] robustness line					Galaxie [®] accuracy line			
Size	Unit	85	110	135	175	215	120	190	300	
Variant		G	G	G	G	G	G	G	G	
Outer diameter ¹	D in mm	115	160	191	241	300	122	193	304	
Length ²	I in mm	157	177	226	267	316	111	151	215	
Max. acceleration torque ³	T _{2B} in Nm	450	1086	1800	4050	7500	350	1500	6000	
Max. output speed ³	n _{2max} in rpm	125	95	80	61	50	125	80	50	
Nominal output torque ³ @ n _{2N}	T _{2N} in Nm	190	450	750	1685	3130	190	750	3000	
Nominal output speed ³ @ T _{2N}	n _{2N} in rpm	31	23	20	15	12	75	50	31	
Emergency stop torque ³	T _{2Not} in Nm	1350	3000	5400	12000	22500	700	3000	12000	
Torsional rigidity ³	C _{t21} in Nm/arcmin	160	370	650	1400	2700	155	625	2500	
Ratio ⁴	i	-24				31				

¹ without connectors / varies depending on mounting position

² without cooling connectors / varies depending on pre-stage and motor-dependent adapter plate ³ values are subject to variations due to factors beyond our control

⁴ with negative gear ratio, output turns in opposite direction to input; with positive gear ratio, output turns in same direction as input

Galaxie® robustness line: Technical data valid without water cooling.

Galaxie® accuracy line: Technical data valid with water cooling.

Technical data for reference only; technical data for 2-stage gearboxes and gearboxes with a different type of cooling may vary - available on request.

Product characteristics:

Galaxie[®] gearbox with hypoid pre-stage and adapter plate – additional coaxial pre-stage and hollow shaft are optional.

Typical applications:

A/B/C axis for precise positioning in machine tools, mechanical drive and assembly systems, such as positioning tasks and wafer handling.

Note:

Optional hollow shaft with hypoid pre-stage. Ratios up to i = 2400 can be realized with additional coaxial pre-stage (no hollow shaft). Adapter plate and motor shaft coupling configurable for all common industrial motors.

		Galaxie [®] robustness line							
Size	Unit	110	135	175	215				
Variant		GH	GH	GH	GH				
Outer diameter ¹	D in mm	160	191	241	300				
Length ²	I in mm	215	260	302	381				
Max. acceleration torque ³	T _{2B} in Nm	1086	1800	4050	7500				
Max. output speed ³	n _{2max} in rpm	95	80	61	50				
Nominal output torque ³ @ n _{2N}	T _{2N} in Nm	450	750	1685	3130				
Nominal output speed ³ @ T _{2N}	n _{2N} in rpm	23	20	15	12				
Emergency stop torque ³	T _{2Not} in Nm	3000	5400	12000	22500				
Torsional rigidity ³	C _{t21} in Nm/arcmin	370	650	1400	2700				
Ratio ⁴	i	72-240							

¹ without connectors / varies depending on mounting position

² without cooling connectors / varies depending on pre-stage and motor-dependent adapter plate ³ values are subject to variations due to factors beyond our control

⁴ output rotates in same direction as input

Technical data for reference only; values for hollow shaft design and MF3 (with additional coaxial pre-stage up to i=2400) on request.

Galaxie[®] D

Galaxie[®] GS

Compact hollow shaft drive with the same characteristics as the gearbox version: zero backlash with highest torque density, torsional rigidity and positioning accuracy with compact integrated synchronous motor.

Typical applications:

A/B/C axis for precise positioning in cutting machine tools or packaging machines, such as gear rolling machines or milling machines.

Note:

Different encoder options, cooling connectors, electrical connectors, cooling options (liquid cooled, convection) and an optional holding brake are available depending on application requirements.

		Galaxie [®] accuracy line				
Size	Unit	85	110	135	175	
Variant		D	D	D	D	
Outer diameter ¹	D in mm	144	187	211	263	
Hollow shaft diameter	d in mm	26	33	45	57	
Length ²	I in mm	197	232	240	325	
Max. acceleration torque ³	T _{2B} in Nm	450	1086	1800	4050	
Max. output speed ³	n _{2max} in rpm	125	95	80	61	On request
Nominal output torque ³ @ n _{2N}	T _{2N} in Nm	190	450	750	1685	
Nominal output speed ³ @ T _{2N}	n _{2N} in rpm	31	23	20	15	
Emergency stop torque ³	T _{2Not} in Nm	1350	3000	5400	12000	
Torsional rigidity ³	C _{t21} in Nm/arcmin	160	370	650	1400	
Ratio ⁴	i					

¹ without connectors / varies depending on mounting position

² without cooling connectors

³ values are subject to variations due to factors beyond our control

⁴ output rotates in opposite direction to input

Technical data valid for actuators with water cooling; data for convection cooling may vary. Technical data for reference only.

110

Product characteristics:

Configurable zero backlash gearbox with hollow shaft and drive interface.

Typical applications:

A/B/C axis for precise positioning in cutting machine tools and automatic lathes.

Note:

Can be driven by e.g. toothed belts and industrial motors arranged in parallel axis. Configurable variants also available for sizes 085 and 215 on request.

		Galaxie [®] robustness line					Galaxie [®] accuracy line			
Size	Unit	85	110	135	175	215	120	190	300	
Variant		GS	GS	GS	GS	GS	GS	GS	GS	
Outer diameter ¹	D in mm		160	191	241		122	193	304	
Hollow shaft diameter	d in mm		33	45	57		44	75	117	
Length ²	I in mm		145	161	213		84	124	183	
Max. acceleration torque ³	T _{2B} in Nm		1086	1800	4050		350	1500	6000	
Max. output speed ³	n _{2max} in rpm		95	80	61		125	80	50	
Nominal output torque ³ @ n _{2N}	T _{2N} in Nm	On request	450	750	1685	On request	190	750	3000	
Nominal output speed ³ @ T _{2N}	n _{2N} in rpm		23	20	15		60	40	25	
Emergency stop torque ³	T _{2Not} in Nm	-	3000	5400	12000	-	700	3000	12000	
Torsional rigidity ³	C _{t21} in Nm/arcmin		370	650	1400		155	625	2500	
Max. lateral force	F1Q(SF1) in N		2150	4500	5850		600	1980	4100	
Ratio ⁴	i			-24				31		

1 without connectors / varies depending on mounting position

² without cooling connectors

³ values are subject to variations due to factors beyond our control

⁴ with negative gear ratio, output turns in opposite direction to input; with positive gear ratio, output turns in same direction as input

Galaxie® robustness line: Technical data valid without water cooling. Galaxie® accuracy line: Technical data valid with water cooling. Technical data for reference only.

WITTENSTEIN galaxie GmbH · Walter-Wittenstein-Straße 1 · 97999 Igersheim · Germany Tel. +49 7931 493-18860 · sales-galaxie@wittenstein.de

WITTENSTEIN Inc. · USA Tel. +1 888-534-1222 · galaxie-info@wittenstein-us.com

WITTENSTEIN GmbH · Austria Tel: +43 2256 65632-0 · office@wittenstein.at

WITTENSTEIN GmbH · Switzerland Tel: +41 81 300 10 30 · sales@wittenstein.ch

WITTENSTEIN Ltd. · Japan Tel: +81 3 6680 2835 · sales@wittenstein.jp

WITTENSTEIN - one with the future